

mitoviz

[image: _images/mitoviz.svg]
 [https://pypi.python.org/pypi/mitoviz][image: Project Status: Active – The project has reached a stable, usable state and is being actively developed.]
 [https://www.repostatus.org/#active][image: _images/mitoviz1.svg]
 [https://travis-ci.com/robertopreste/mitoviz][image: _images/badge.svg]
 [https://codecov.io/gh/robertopreste/mitoviz][image: Documentation Status]
 [https://mitoviz.readthedocs.io/en/latest/?badge=latest]Plot variants on the human mitochondrial genome.

	Free software: MIT license

	Documentation: https://mitoviz.readthedocs.io

	GitHub repo: https://github.com/robertopreste/mitoviz

Features

mitoviz is a simple python package to plot human mitochondrial variants on a graphical
representation of the human mitochondrial genome. It currently supports plotting variants
stored in VCF and tabular files, as well as from general pandas dataframes when importing
mitoviz in Python.

Variants are shown according to their heteroplasmic fraction (HF), plotting variants with
HF = 1.0 on the outer border of the mitochondrial circle, those with HF = 0.0 on the inner
border and all the others in between, according to their actual HF value.

[image: Mitochondrial plot with HF]
If the HF information is not available, variants will all be shown in the middle of the
mitochondrial circle.

A linear representation of the mitochondrial genome can also be plotted; in this case,
variants are shown using a lollipop plot style, with the height of the marker reflecting
their HF.

[image: Mitochondrial linear plot with HF]
Variants with no HF information will be shown as if their HF was 0.5.

Usage

mitoviz can be used both from the command line and as a python module.

Command Line

Given a VCF file with human mitochondrial variants (sample.vcf), plotting them is fairly
simple:

$ mitoviz sample.vcf

An image named mitoviz.png will be created in the current directory; if you want to provide a
specific filename where the plot will be saved, just add the --output option with the desired
path:

$ mitoviz sample.vcf --output my_mt_plot.png

Linear plots can be created using the --linear option:

$ mitoviz sample.vcf --linear

Polar and linear interactive plots can also be created by adding the --interactive option, and
will be saved to an HTML file:

$ mitoviz sample.vcf --interactive

It is also possible to plot variants stored in a tabular file, such as CSV or TSV formats; mitoviz
will automatically recognise them, treating the file as comma-separated by default. If a different
separator is used (as in the case of TSV files), just specify it with the --sep option:

$ mitoviz sample.tsv --sep "\t"

If you just need to create an empty mitochondrial plot, we’ve got you covered: use the
mitoviz-base command and provide one or more options like --linear, --interactive,
--legend, --split, --output, based on your needs.

Python Module

Import mitoviz and use its plot_vcf function to use it in your own script:

from mitoviz import plot_vcf

my_plot = plot_vcf("sample.vcf")

In this case, no plot will be shown until a call to plt.show() is made. It is possible to
save the resulting plot using the save option and to provide a specific file where the plot
will be saved using the output option:

plot_vcf("sample.vcf", save=True, output="my_mt_plot.png")

By default, a polar plot is returned; linear plots are easily created using the linear option:

plot_vcf("sample.vcf", save=True, linear=True)

Interactive plots can be created with the interactive option, and can be either saved to an
HTML file or inspected in a Jupyter notebook:

Show the interactive plot (works in a Jupyter notebook)
plot_vcf("sample.vcf", interactive=True)
Save the interactive plot to an HTML file
plot_vcf("sample.vcf", interactive=True, save=True)

A similar function to plot variants contained in a pandas DataFrame is available as plot_df.
Supposing you have a pandas DataFrame with human mitochondrial variants named variants_df, it
is possible to plot them as follows:

from mitoviz import plot_df

plot_df(variants_df)

Variants stored in tabular files can be plotted using plot_table, which accepts the same
options available for plot_vcf and plot_df, with the addition of sep, which is used to
specify the column separator. By default, the comma is used as column delimiter:

from mitoviz import plot_table

plotting a CSV file
plot_table("sample.csv")
plotting a TSV (tab-separated) file
plot_table("sample.tsv", sep="\t")

plot_table also accept additional keyword options, which will be passed to pandas.read_table
when processing the given input file:

plot_table("sample.tsv", sep="\t", comment="#", skiprows=0)

If you just need to create an empty mitochondrial plot, the plot_base function allows to do so,
and accepts the linear, interactive, legend, split, output and save
arguments to further tweak its behaviour.

Please refer to the Usage [https://mitoviz.readthedocs.io/en/latest/usage.html] section of the documentation for further information.

Installation

PLEASE NOTE: HmtNote only supports Python >= 3.6!

The preferred installation method for mitoviz is using pip:

$ pip install mitoviz

Please refer to the Installation [https://mitoviz.readthedocs.io/en/latest/installation.html] section of the documentation for further information.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the cc-pypackage [https://github.com/robertopreste/cc-pypackage] project template.

Table of contents

Contents:

	mitoviz
	Features

	Usage

	Installation

	Credits

	Installation
	Stable release

	From sources

	Usage
	Command Line

	Python Module

	API
	Command Line Interface

	Python Module

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2019-12-27)

	0.2.0 (2019-12-29)

	0.3.0 (2020-01-15)

	0.4.0 (2020-01-26)

	0.5.0 (2020-02-19)

	0.6.0 (2020-02-29)

	0.7.0 (2020-03-15)

	0.8.0 (2020-04-05)

	0.9.0 (2020-06-11)

Indices and tables

	Index

	Module Index

	Search Page

mitoviz

[image: _images/mitoviz.svg]
 [https://pypi.python.org/pypi/mitoviz][image: Project Status: Active – The project has reached a stable, usable state and is being actively developed.]
 [https://www.repostatus.org/#active][image: _images/mitoviz1.svg]
 [https://travis-ci.com/robertopreste/mitoviz][image: _images/badge.svg]
 [https://codecov.io/gh/robertopreste/mitoviz][image: Documentation Status]
 [https://mitoviz.readthedocs.io/en/latest/?badge=latest]Plot variants on the human mitochondrial genome.

	Free software: MIT license

	Documentation: https://mitoviz.readthedocs.io

	GitHub repo: https://github.com/robertopreste/mitoviz

Features

mitoviz is a simple python package to plot human mitochondrial variants on a graphical
representation of the human mitochondrial genome. It currently supports plotting variants
stored in VCF and tabular files, as well as from general pandas dataframes when importing
mitoviz in Python.

Variants are shown according to their heteroplasmic fraction (HF), plotting variants with
HF = 1.0 on the outer border of the mitochondrial circle, those with HF = 0.0 on the inner
border and all the others in between, according to their actual HF value.

[image: Mitochondrial plot with HF]
If the HF information is not available, variants will all be shown in the middle of the
mitochondrial circle.

A linear representation of the mitochondrial genome can also be plotted; in this case,
variants are shown using a lollipop plot style, with the height of the marker reflecting
their HF.

[image: Mitochondrial linear plot with HF]
Variants with no HF information will be shown as if their HF was 0.5.

Usage

mitoviz can be used both from the command line and as a python module.

Command Line

Given a VCF file with human mitochondrial variants (sample.vcf), plotting them is fairly
simple:

$ mitoviz sample.vcf

An image named mitoviz.png will be created in the current directory; if you want to provide a
specific filename where the plot will be saved, just add the --output option with the desired
path:

$ mitoviz sample.vcf --output my_mt_plot.png

Linear plots can be created using the --linear option:

$ mitoviz sample.vcf --linear

Polar and linear interactive plots can also be created by adding the --interactive option, and
will be saved to an HTML file:

$ mitoviz sample.vcf --interactive

It is also possible to plot variants stored in a tabular file, such as CSV or TSV formats; mitoviz
will automatically recognise them, treating the file as comma-separated by default. If a different
separator is used (as in the case of TSV files), just specify it with the --sep option:

$ mitoviz sample.tsv --sep "\t"

If you just need to create an empty mitochondrial plot, we’ve got you covered: use the
mitoviz-base command and provide one or more options like --linear, --interactive,
--legend, --split, --output, based on your needs.

Python Module

Import mitoviz and use its plot_vcf function to use it in your own script:

from mitoviz import plot_vcf

my_plot = plot_vcf("sample.vcf")

In this case, no plot will be shown until a call to plt.show() is made. It is possible to
save the resulting plot using the save option and to provide a specific file where the plot
will be saved using the output option:

plot_vcf("sample.vcf", save=True, output="my_mt_plot.png")

By default, a polar plot is returned; linear plots are easily created using the linear option:

plot_vcf("sample.vcf", save=True, linear=True)

Interactive plots can be created with the interactive option, and can be either saved to an
HTML file or inspected in a Jupyter notebook:

Show the interactive plot (works in a Jupyter notebook)
plot_vcf("sample.vcf", interactive=True)
Save the interactive plot to an HTML file
plot_vcf("sample.vcf", interactive=True, save=True)

A similar function to plot variants contained in a pandas DataFrame is available as plot_df.
Supposing you have a pandas DataFrame with human mitochondrial variants named variants_df, it
is possible to plot them as follows:

from mitoviz import plot_df

plot_df(variants_df)

Variants stored in tabular files can be plotted using plot_table, which accepts the same
options available for plot_vcf and plot_df, with the addition of sep, which is used to
specify the column separator. By default, the comma is used as column delimiter:

from mitoviz import plot_table

plotting a CSV file
plot_table("sample.csv")
plotting a TSV (tab-separated) file
plot_table("sample.tsv", sep="\t")

plot_table also accept additional keyword options, which will be passed to pandas.read_table
when processing the given input file:

plot_table("sample.tsv", sep="\t", comment="#", skiprows=0)

If you just need to create an empty mitochondrial plot, the plot_base function allows to do so,
and accepts the linear, interactive, legend, split, output and save
arguments to further tweak its behaviour.

Please refer to the Usage [https://mitoviz.readthedocs.io/en/latest/usage.html] section of the documentation for further information.

Installation

PLEASE NOTE: HmtNote only supports Python >= 3.6!

The preferred installation method for mitoviz is using pip:

$ pip install mitoviz

Please refer to the Installation [https://mitoviz.readthedocs.io/en/latest/installation.html] section of the documentation for further information.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the cc-pypackage [https://github.com/robertopreste/cc-pypackage] project template.

Installation

Stable release

To install mitoviz, run this command in your terminal:

$ pip install mitoviz

This is the preferred method to install mitoviz, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for mitoviz can be downloaded from the Github repo [https://github.com/robertopreste/mitoviz].

You can either clone the public repository:

$ git clone git://github.com/robertopreste/mitoviz

Or download the tarball [https://github.com/robertopreste/mitoviz/tarball/master]:

$ curl -OL https://github.com/robertopreste/mitoviz/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

mitoviz can be used both from the command line and as a python module.

Command Line

Given a VCF file with human mitochondrial variants (sample.vcf), plotting them is fairly
simple:

$ mitoviz sample.vcf

An image named mitoviz.png will be created in the current directory.

If you want to provide a specific filename where the plot will be saved, just add the --output
option with the desired path:

$ mitoviz sample.vcf --output my_mt_plot.png

If the provided VCF file contains more than one sample, a separate plot will be created for each
of them; if you want to plot only a specific sample, use the --sample option:

$ mitoviz multisample.vcf --sample SRR1777294

It is possible to show labels above each variant using the --labels flag:

$ mitoviz sample.vcf --labels

If you want to include the HF value of variants in the labels, add the --labels-hf flag:

$ mitoviz sample.vcf --labels --labels-hf

Mitochondrial loci on mitoviz plots are drawn using a green color for protein-coding, blue for
tRNAs, red for rRNAs, orange for regulatory (D-Loop and L-strand origin) and grey for non-coding
loci. It is possible to include a legend in the
resulting plot, using the --legend option:

$ mitoviz sample.vcf --legend

The plot can draw loci located on H and L strands on two different levels, using the --split
option:

$ mitoviz sample.vcf --split

mitoviz can create linear plots as well, where variants are shown using a lollipop plot style,
using the --linear option:

$ mitoviz sample.vcf --linear

Linear plots can be managed and customised using the --output, --sample, --labels,
--legend and --split options.

Polar and linear interactive plots can also be created by adding the --interactive option, and
will be saved to an HTML file:

$ mitoviz sample.vcf --interactive

It is also possible to plot variants stored in a tabular file, such as CSV or TSV formats; mitoviz
will automatically recognise them, treating the file as comma-separated by default. If a different
separator is used (as in the case of TSV files), just specify it with the --sep option:

$ mitoviz sample.tsv --sep "\t"

Additional keyword options can be specified in the format option=value, and will be passed to
pandas.read_table when processing the given input file:

$ mitoviz sample.tsv --sep "\t" comment=#

If you just need to create an empty mitochondrial plot, we’ve got you covered: use the
mitoviz-base command and provide one or more options like --linear, --interactive,
--legend, --split, --output, based on your needs:

Create a base polar plot
$ mitoviz-base

Create a base linear plot and save it as "base_linear.png"
$ mitoviz-base --linear --output "base_linear.png"

Create an interactive linear plot with split loci
$ mitoviz-base --linear --interactive --split

Comprehensive help about the mitoviz CLI can be found with mitoviz --help and
mitoviz-base --help.

Python Module

Import mitoviz and use its plot_vcf function to use it in your own script:

from mitoviz import plot_vcf

my_plot = plot_vcf("sample.vcf")

In this case, no plot will be shown until a call to plt.show() is made. It is possible to
save the resulting plot using the save option and to provide a specific file where the plot will be
saved using the output option:

from mitoviz import plot_vcf

plot_vcf("sample.vcf", save=True, output="my_mt_plot.png")

If the provided VCF file contains more than one sample, a separate plot will be created for each
of them; if you want to plot only a specific sample, use the sample option:

from mitoviz import plot_vcf

plot_vcf("multisample.vcf", save=True, sample="SRR1777294")

If you want to show labels for each variant plotted, add the labels=True option:

from mitoviz import plot_vcf

plot_vcf("sample.vcf", labels=True)

If you also want HF values in the labels, add the labels_hf=True option:

from mitoviz import plot_vcf

plot_vcf("sample.vcf", labels=True, labels_hf=True)

It is possible to include a legend for loci colors in the output plot, using the legend=True
option:

from mitoviz import plot_vcf

plot_vcf("sample.vcf", legend=True)

Loci located on the H and L strands can be shown on two separate levels, using the split=True
option:

from mitoviz import plot_vcf

plot_vcf("sample.vcf", split=True)

Linear plots can be also created (instead of the default polar plot), using the linear=True
option:

from mitoviz import plot_vcf

plot_vcf("sample.vcf", linear=True)

The linear=True option can be combined with previously described options as well.

Interactive plots can be created with the interactive option, and can be either saved to an
HTML file or inspected in a Jupyter notebook:

Show the interactive plot (works in a Jupyter notebook)
plot_vcf("sample.vcf", interactive=True)
Save the interactive plot to an HTML file
plot_vcf("sample.vcf", interactive=True, save=True)

Comprehensive help about the plot_vcf function can be found with help(mitoviz.plot_vcf).

A similar function to plot variants contained in a pandas DataFrame is available as plot_df.
Supposing you have a pandas DataFrame with human mitochondrial variants named variants_df, it
is possible to plot them as follows:

from mitoviz import plot_df

plot_df(variants_df)

This function expects a DataFrame with at least a reference allele, position and alternate allele
columns; these are respectively called “REF”, “POS” and “ALT” by default, but it is possible to
use custom column names:

from mitoviz import plot_df

plot_df(variants_df, ref_col="position", ref_col="reference", alt_col="alternate")

It is possible to provide optional sample and hf (heteroplasmic fraction) columns, which are called
“SAMPLE” and “HF” by default but can be customised using the sample_col and hf_col options.

Apart from this, plot_df accepts the same set of options available for plot_vcf.
Comprehensive help about the plot_df function can be found with help(mitoviz.plot_df).

Variants stored in tabular files can be plotted using plot_table, which accepts the same
options available for plot_vcf and plot_df, with the addition of sep, which is used to
specify the column separator. By default, the comma is used as column delimiter:

from mitoviz import plot_table

plotting a CSV file
plot_table("sample.csv")
plotting a TSV (tab-separated) file
plot_table("sample.tsv", sep="\t")

plot_table also accept additional keyword options, which will be passed to pandas.read_table
when processing the given input file:

from mitoviz import plot_table

plot_table("sample.tsv", sep="\t", comment="#", skiprows=0)

Comprehensive help about the plot_table function can be found with help(mitoviz.plot_table).

If you just need to create an empty mitochondrial plot, the plot_base function allows to do so,
and accepts the linear, interactive, legend, split, output and save
arguments to further tweak its behaviour:

from mitoviz import plot_base

Create a base polar plot
plot_base()
Create a base linear plot and save it as "base_linear.png"
plot_base(linear=True, save=True, output="base_linear.png)
Create an interactive linear plot with split loci
plot_base(linear=True, interactive=True, split=True)

API

Command Line Interface

Python Module

Plot variants from the given VCF file.

	param in_vcf

	path of the input VCF file

	param linear

	plot variants on a linear plot rather than a polar one
[default: False]

	param sample

	specific sample to plot (defaults to all available samples)

	param save

	if true, the final plot will be saved to a file [default: False]

	param output

	path of the output file where the plot will be saved

	param labels

	if true, add a label for each variant shown [default: False]

	param labels_hf

	if true and labels=True, show HF value in each variant’s
label [default: False]

	param legend

	if true, add a legend for loci colors in the plot
[default: False]

	param split

	if true, plot split H and L strands [default: False]

	param interactive

	if true, create an interactive version of the plot
[default: False]

Plot variant from the given pandas DataFrame.

	param in_df

	input pandas DataFrame

	param linear

	plot variants on a linear plot rather than a polar one
[default: False]

	param sample

	specific sample to plot (defaults to all available samples)

	param save

	if true, the final plot will be saved to a file [default: False]

	param output

	path of the output file where the plot will be saved

	param labels

	if true, add a label for each variant shown [default: False]

	param labels_hf

	if true and labels=True, show HF value in each variant’s
label [default: False]

	param legend

	if true, add a legend for loci colors in the plot
[default: False]

	param split

	if true, plot split H and L strands [default: False]

	param interactive

	if true, create an interactive version of the plot
[default: False]

	param pos_col

	column name for the variant position

	param ref_col

	column name for the variant reference allele

	param alt_col

	column name for the variant alternate allele

	param sample_col

	column name for the variant sample

	param hf_col

	column name for the variant heteroplasmic fraction

Plot variants from the given tabular file.

	param in_table

	path of the input tabular file

	param sep

	column delimiter used [default: ‘,’]

	param linear

	plot variants on a linear plot rather than a polar one
[default: False]

	param sample

	specific sample to plot (defaults to all available samples)

	param save

	if true, the final plot will be saved to a file [default: False]

	param output

	path of the output file where the plot will be saved

	param labels

	if true, add a label for each variant shown [default: False]

	param labels_hf

	if true and labels=True, show HF value in each variant’s
label [default: False]

	param legend

	if true, add a legend for loci colors in the plot
[default: False]

	param split

	if true, plot split H and L strands [default: False]

	param interactive

	if true, create an interactive version of the plot
[default: False]

	param pos_col

	column name for the variant position

	param ref_col

	column name for the variant reference allele

	param alt_col

	column name for the variant alternate allele

	param sample_col

	column name for the variant sample

	param hf_col

	column name for the variant heteroplasmic fraction

	param **kwargs

	additional arguments passed to pandas.read_table()

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/robertopreste/mitoviz/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

mitoviz could always use more documentation, whether as part of the
official mitoviz docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/robertopreste/mitoviz/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up mitoviz for local development.

	Fork the mitoviz repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/mitoviz.git

	Set up a virtualenv for local development:

$ cd mitoviz/
$ python -m venv venv
$ source venv/bin/activate
$ python -m ci install-reqs
$ python -m ci install

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox. In order to test mitoviz,
you’ll also need to clone the mitoviz_testimgs repo to the right location:

$ git clone https://github.com/robertopreste/mitoviz_testimgs.git mitoviz/tests/imgs
$ python -m ci flake8
$ pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5 and 3.6. Check
https://travis-ci.org/robertopreste/mitoviz/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_mitoviz

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Credits

Development Lead

	Roberto Preste <robertopreste@gmail.com>

Contributors

None yet. Why not be the first?

History

0.1.0 (2019-12-27)

	First release.

0.2.0 (2019-12-29)

	Add functionality to plot multiple samples.

0.2.1 (2020-01-06)

	Add legend to plots and update colors.

0.2.2 (2020-01-08)

	Add option to plot variant labels.

0.2.3 (2020-01-11)

	Make legend plotting optional.

0.3.0 (2020-01-15)

	Add plot_df function to plot variants from a pandas DataFrame.

0.4.0 (2020-01-26)

	Add plot_table function to plot variants from tabular files;

	add CLI functionality to plot variants from tabular files;

	refactor code.

0.4.1 (2020-02-13)

	Refactor to use abstract classes;

	Rename internal classes to _PolarLocus and _PolarVariant.

0.4.2 (2020-02-14)

	Fix bug with non coding loci not being shown in plots.

0.5.0 (2020-02-19)

	Add split option to plot split strands on polar plots.

0.6.0 (2020-02-29)

	_PolarVariant is deprecated and replaced by _Variant;

	Add linear option to create linear plots.

0.6.1 (2020-03-02)

	Refactor and clean code;

	Add CI module for internal management.

0.6.2 (2020-03-03)

	Fix borders on linear plots.

0.6.3 (2020-03-04)

	Fix stemlines on split linear plots.

0.6.4 (2020-03-10)

	Fix loci label positions on polar plots.

0.7.0 (2020-03-15)

	Add --interactive option to create interactive plots using plot.ly;

	Implement interactive basic polar plots;

	Implement interactive split polar plots.

0.7.1 (2020-03-28)

	Implement interactive basic linear plots;

	Implement interactive split linear plots.

0.8.0 (2020-04-05)

	Add mitoviz-base command to create base mitochondrial plots.

0.8.1 (2020-04-12)

	Move test images to separate subrepo.

0.8.2 (2020-04-20)

	Add --labels-hf (labels-hf=True in Python) options to include the HF value
in plot labels.

0.9.0 (2020-06-11)

	Refactor code to create plotting classes.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mitoviz	

 	
 	
 mitoviz.plot_df	

 	
 	
 mitoviz.plot_table	

 	
 	
 mitoviz.plot_vcf	

Index

 M

M

 	
 	
 mitoviz.plot_df

 	module

 	
 mitoviz.plot_table

 	module

 	
 mitoviz.plot_vcf

 	module

 	
 	
 module

 	mitoviz.plot_df

 	mitoviz.plot_table

 	mitoviz.plot_vcf

 _images/sample_linear_hf.png
HG00420

DLOOP

CYTB TT

TE

ND6

ND5

THTL2
TS2

ND4

TG ND3 TRND4L

Cco3

ATP6

ATP8
TK

Co2

TS1

co1

ND1 T ™ ND2
TQ

TL1

RNR2

RNR1

DLOOP TF

TD

16000

12000

8000

4000

1.00 -

0.75 A

0.50 A

0.25 A

0.00 A

_images/sample_hf.png
HG00420

TF 1T

TP

ND1

CO2 TKATPS

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 mitoviz

 		
 mitoviz

 		
 Features

 		
 Usage

 		
 Command Line

 		
 Python Module

 		
 Installation

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Command Line

 		
 Python Module

 		
 API

 		
 Command Line Interface

 		
 Python Module

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2019-12-27)

 		
 0.2.0 (2019-12-29)

 		
 0.2.1 (2020-01-06)

 		
 0.2.2 (2020-01-08)

 		
 0.2.3 (2020-01-11)

 		
 0.3.0 (2020-01-15)

 		
 0.4.0 (2020-01-26)

 		
 0.4.1 (2020-02-13)

 		
 0.4.2 (2020-02-14)

 		
 0.5.0 (2020-02-19)

 		
 0.6.0 (2020-02-29)

 		
 0.6.1 (2020-03-02)

 		
 0.6.2 (2020-03-03)

 		
 0.6.3 (2020-03-04)

 		
 0.6.4 (2020-03-10)

 		
 0.7.0 (2020-03-15)

 		
 0.7.1 (2020-03-28)

 		
 0.8.0 (2020-04-05)

 		
 0.8.1 (2020-04-12)

 		
 0.8.2 (2020-04-20)

 		
 0.9.0 (2020-06-11)

_static/plus.png

